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COMMENT 

Exact multi-soliton solution of the Benjamin-Ono equation 

Y Matsuno 
Department of Physics, Faculty of Science, Kyoto University, Kyoto, Japan 

Received 14 August 1978 

Abstract. An exact multi-soliton solution of the Benjamin-Ono equation is presented. The 
asymptotic form of the solution for large time is also given. 

The Benjamin-Ono equation (Benjamin 1966, 1967, Ono 1975) which describes 
internal waves is written as 

where H is the Hilbert transform defined by 

The stationary solution of equation (1) is given by 

V 
u ( x ,  t )  = 

v2(X-Vt-()2+1 (3) 

where V and ( are arbitrary constants which may be called the velocity and the phase 
respectively. 

Recently Joseph (1977) proposed an analytical method for solving equation (1) and 
obtained a two-soliton solution explicitly. Meiss and Pereira (1978) found new 
conserved quantities of equation (1) and surmised the existence of exact two- and 
three-soliton solutions. 

In the present comment we solve equation (1) by transforming it into a bilinear form 
according to Hirota’s method (Hirota 1971) and give an explicit expression for the 
N-soliton solution of equation (1). 

Now we seek a solution of equation (1) which is real and finite over all x, t and 
express it in the following form: 

f(x, f ) a ( x  -xl(t))(x -x2(t)) . . . (x - X N ( f ) )  ( 5 )  

Imx,>O n = 1 , 2 , .  . . , N (6) 
where x, ( a  = 1,2,  . . . , N) are complex functions of t and * denotes a complex 
con jugat e. 
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Using (4)-(6) and the formula 

( 
1 

P-=; lim 
y-x  E + + O  y - x + i c  y-x- ic  

we obtain 

(7) 

where we have performed the contour integral closed by a large semicircle in the upper 
half -plane and used 

n = 1 ,2 ,  . . . , N 
1 

lim [(x-x,,)u(x, t ) ] = -  
X - X "  2i (9) 

which are derived from (4) and ( 5 ) .  
Substituting (4) and (8) into equation ( l) ,  we get a bilinear equation for f as follows: 

(10) 

where subscripts x, t denote partial differentiations. The solution of equation (10) is 
expressed as 

Im(f:'f) = f T f x  - Re(f2f )  

kW = det M (11) 

where M is an N x N matrix whose elements are given by 

[io, + 1 for n = m 

for n # m, 
Vn - Vm 

with 

e, = v n ( x -  v,t-(,,) (13) 

where V,, and 6, (n = 1 , 2 , .  . . , N )  are arbitrary constants and it is assumed that 
V,, # V, for n # m. It is confirmed by direct substitution that (1 1)-(13) give an exact 
solution of equation (10). The equivalence of the present results with known solutions 
for one- and two-soliton solutions can be checked easily. 

For N = 1, we have 

f l  = io1 + 1. (14) 
Substitution of (14) into (4) gives a one-soliton solution (3) immediately. 

For N = 2, we have 

f2 = -ole2 + i(el + e,) + VIZ (15) 

This solution corresponds to a two-soliton solution obtained by Joseph (1977). The 
equivalence of (4) substituted from (15) to Joseph's solution (2.63) can easily be seen by 
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transforming his equation (1.4) into a moving frame with a velocity co and putting 

1 v 2 +  v1 
(VI v2p2 v, - VI * 

c = 4  coy = 1 p=(v: + v: -4V1V2)/V1V2 4 =  

For N = 3, we have 

f3 = -ieleze3 - (e1e2+ e283 + e3e1) 
+i(V2381+ V 3 1 e 2 +  VI2e3)+ V I 2 +  v 2 3 +  v31-2, 

which corresponds to a three-soliton solution. 

( l l ) ,  (12 )  and (13), we get for t + * w  
Now we investigate the asymptotic behaviour of our solution for large t .  From ( 4 ) ,  

that is, u ( x ,  t )  is represented by a superposition of one-soliton solutions (3) .  It is seen 
from (18 )  that no phase-shift appears as the result of collisions of solitons unlike those 
which take place between K-d V solitons (Gardner et a1 1974). This is an interesting 
feature of the system of solutions expressed by (1 1)-( 13). 
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