Exact multi-soliton solution of the Benjamin-Ono equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1979 J. Phys. A: Math. Gen. 12619
(http://iopscience.iop.org/0305-4470/12/4/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 19:28

Please note that terms and conditions apply.

COMMENT

Exact multi-soliton solution of the Benjamin-Ono equation

Y Matsuno
Department of Physics, Faculty of Science, Kyoto University, Kyoto, Japan

Received 14 August 1978

Abstract

An exact multi-soliton solution of the Benjamin-Ono equation is presented. The asymptotic form of the solution for large time is also given.

The Benjamin-Ono equation (Benjamin 1966, 1967, Ono 1975) which describes internal waves is written as

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}+4 u(x, t) \frac{\partial u(x, t)}{\partial x}+H\left(\frac{\partial^{2} u(x, t)}{\partial x^{2}}\right)=0 \tag{1}
\end{equation*}
$$

where H is the Hilbert transform defined by

$$
\begin{equation*}
H[u(x, t)]=\frac{1}{\pi} \mathrm{P} \int_{-\infty}^{\infty} \frac{u(y, t)}{y-x} \mathrm{~d} y \tag{2}
\end{equation*}
$$

The stationary solution of equation (1) is given by

$$
\begin{equation*}
u(x, t)=\frac{V}{V^{2}(x-V t-\xi)^{2}+1} \tag{3}
\end{equation*}
$$

where V and ξ are arbitrary constants which may be called the velocity and the phase respectively.

Recently Joseph (1977) proposed an analytical method for solving equation (1) and obtained a two-soliton solution explicitly. Meiss and Pereira (1978) found new conserved quantities of equation (1) and surmised the existence of exact two- and three-soliton solutions.

In the present comment we solve equation (1) by transforming it into a bilinear form according to Hirota's method (Hirota 1971) and give an explicit expression for the N-soliton solution of equation (1).

Now we seek a solution of equation (1) which is real and finite over all x, t and express it in the following form:

$$
\begin{align*}
& u(x, t)=\frac{\mathrm{i}}{2} \frac{\partial}{\partial x} \ln \frac{f^{*}(x, t)}{f(x, t)} \tag{4}\\
& f(x, t) \propto\left(x-x_{1}(t)\right)\left(x-x_{2}(t)\right) \ldots\left(x-x_{N}(t)\right) \tag{5}\\
& \operatorname{Im} x_{n}>0 \quad n=1,2, \ldots, N \tag{6}
\end{align*}
$$

where $x_{n}(n=1,2, \ldots, N)$ are complex functions of t and * denotes a complex conjugate.

Using (4)-(6) and the formula

$$
\begin{equation*}
\mathrm{P} \frac{1}{y-x}=\frac{1}{2} \lim _{\epsilon \rightarrow+0}\left(\frac{1}{y-x+\mathrm{i} \epsilon}+\frac{1}{y-x-\mathrm{i} \epsilon}\right) \tag{7}
\end{equation*}
$$

we obtain

$$
\begin{align*}
H[u(x, t)] & =\mathrm{i} u(x, t)-\sum_{n=1}^{\mathrm{N}} \frac{1}{x-x_{n}} \\
& =\mathrm{i} u(x, t)-\frac{\partial f(x, t) / \partial x}{f(x, t)} \tag{8}
\end{align*}
$$

where we have performed the contour integral closed by a large semicircle in the upper half-plane and used

$$
\begin{equation*}
\lim _{x \rightarrow x_{n}}\left[\left(x-x_{n}\right) u(x, t)\right]=\frac{1}{2 \mathrm{i}} \quad n=1,2, \ldots, N \tag{9}
\end{equation*}
$$

which are derived from (4) and (5).
Substituting (4) and (8) into equation (1), we get a bilinear equation for f as follows:

$$
\begin{equation*}
\operatorname{Im}\left(f_{t}^{*} f\right)=f_{x}^{*} f_{x}-\operatorname{Re}\left(f_{x x}^{*} f\right) \tag{10}
\end{equation*}
$$

where subscripts x, t denote partial differentiations. The solution of equation (10) is expressed as

$$
\begin{equation*}
f_{N}=\operatorname{det} M \tag{11}
\end{equation*}
$$

where M is an $N \times N$ matrix whose elements are given by

$$
M_{n m}= \begin{cases}\mathrm{i} \theta_{n}+1 & \text { for } n=m \tag{12}\\ \frac{2\left(V_{n} V_{m}\right)^{1 / 2}}{V_{n}-V_{m}} & \text { for } n \neq m\end{cases}
$$

with

$$
\begin{equation*}
\theta_{n}=V_{n}\left(x-V_{n} t-\xi_{n}\right) \tag{13}
\end{equation*}
$$

where V_{n} and $\xi_{n}(n=1,2, \ldots, N)$ are arbitrary constants and it is assumed that $V_{n} \neq V_{m}$ for $n \neq m$. It is confirmed by direct substitution that (11)-(13) give an exact solution of equation (10). The equivalence of the present results with known solutions for one- and two-soliton solutions can be checked easily.

For $N=1$, we have

$$
\begin{equation*}
f_{1}=\mathrm{i} \theta_{1}+1 \tag{14}
\end{equation*}
$$

Substitution of (14) into (4) gives a one-soliton solution (3) immediately.
For $N=2$, we have

$$
\begin{equation*}
f_{2}=-\theta_{1} \theta_{2}+\mathrm{i}\left(\theta_{1}+\theta_{2}\right)+V_{12} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{n m}=\left[\left(V_{n}+V_{m}\right) /\left(V_{n}-V_{m}\right)\right]^{2} \tag{16}
\end{equation*}
$$

This solution corresponds to a two-soliton solution obtained by Joseph (1977). The equivalence of (4) substituted from (15) to Joseph's solution (2.63) can easily be seen by
transforming his equation (1.4) into a moving frame with a velocity c_{0} and putting

$$
C=4 \quad c_{0} \gamma=1 \quad p=\left(V_{1}^{2}+V_{2}^{2}-4 V_{1} V_{2}\right) / V_{1} V_{2} \quad q=\frac{1}{\left(V_{1} V_{2}\right)^{1 / 2}} \frac{V_{2}+V_{1}}{V_{2}-V_{1}} .
$$

For $N=3$, we have

$$
\begin{align*}
f_{3}=-\mathrm{i} \theta_{1} \theta_{2} \theta_{3} & -\left(\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{3} \theta_{1}\right) \\
& +\mathrm{i}\left(V_{23} \theta_{1}+V_{31} \theta_{2}+V_{12} \theta_{3}\right)+V_{12}+V_{23}+V_{31}-2, \tag{17}
\end{align*}
$$

which corresponds to a three-soliton solution.
Now we investigate the asymptotic behaviour of our solution for large t. From (4), (11), (12) and (13), we get for $t \rightarrow \pm \infty$

$$
\begin{equation*}
u(x, t) \sim \sum_{n=1}^{N} \frac{V_{n}}{V_{n}^{2}\left(x-V_{n} t-\xi_{n}\right)^{2}+1} \tag{18}
\end{equation*}
$$

that is, $u(x, t)$ is represented by a superposition of one-soliton solutions (3). It is seen from (18) that no phase-shift appears as the result of collisions of solitons unlike those which take place between $K-\mathrm{d} V$ solitons (Gardner et al 1974). This is an interesting feature of the system of solutions expressed by (11)-(13).

Acknowledgments

The author would like to express his cordial thanks to Professor T Tatsumi for his encouragement. He is also indebted to Professor H Ono for valuable discussions about the form of an N-soliton solution.

References

Benjamin T B 1966 J. Fluid Mech. 25241

