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COMMENT

Exact multi-soliton solution of the Benjamin-Ono equation

Y Matsuno

Department of Physics, Faculty of Science, Kyoto University, Kyoto, Japan
Received 14 August 1978

Abstract. An exact multi-soliton solution of the Benjamin—-Ono equation is presented. The
asymptotic form of the solution for large time is also given.

The Benjamin-Ono equation (Benjamin 1966, 1967, Ono 1975) which describes
internal waves is written as

) o u(x, t
ux, 1) t)+4u(x, t)au(x t)+H( u(xz )>=O (1)
at ox dx
where H is the Hilbert transform defined by
1_(~% ¢
Hlu(x, r)]=~—P‘( Mcly. (2)
T e y—x
The stationary solution of equation (1) is given by
1%
= 3
u(x 1) Vix—Vi—¢)°’+1 (3)

where V and £ are arbitrary constants which may be called the velocity and the phase
respectively.

Recently Joseph (1977) proposed an analytical method for solving equation (1) and
obtained a two-soliton solution explicitly. Meiss and Pereira (1978) found new
conserved quantities of equation (1) and surmised the existence of exact two- and
three-soliton solutions.

In the present comment we solve equation (1) by transforming it into a bilinear form
according to Hirota’s method (Hirota 1971) and give an explicit expression for the
N -soliton solution of equation (1).

Now we seek a solution of equation (1) which is real and finite over all x, ¢ and
express it in the following form:

i 8 *(x,
u(x, t)=§ aln% 4)
fl ) oc(x = x1 () (x —x2(0)) . .. (x —xn (1)) (5)
Imux,>0 n=12,...,N (6)
where x, (n=1,2,...,N) are complex functions of ¢ and * denotes a complex

conjugate.
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Using (4)-(6) and the formula

1y ! :
Py—x—zsliTo(y—x+ie+)"x”i‘> '
we obtain
N
Hlu(x, 1)) =1ulx, t)—,,; X =X,
s/
= IM(X, 1) f(x, ) (8)

where we have performed the contour integral closed by a large semicircle in the upper
half-plane and used

lim [(x —x,)u(x, t)]=% n=12,...,N (9

X Xp

which are derived from (4) and (5).
Substituting (4) and (8) into equation (1), we get a bilinear equation for f as follows:

Im(f f) =< f« —Re(ff) (10)

where subscripts x, ¢ denote partial differentiations. The solution of equation (10) is
expressed as

'~ =det M (11)
where M is an N X N matrix whose elements are given by
16, +1 forn=m
Mom = ———2(V"V'")U2 forn #m, (12)
Vo=V
with
0n = Vilx = Vit = §,) (13)
where V, and &, (n=1,2,...,N) are arbitrary constants and it is assumed that

V. # V,, for n # m. It is confirmed by direct substitution that (11)-(13) give an exact
solution of equation (10). The equivalence of the present results with known solutions
for one- and two-soliton solutions can be checked easily.

For N =1, we have

fi=i8,+1. (14)

Substitution of (14) into (4) gives a one-soliton solution (3) immediately.
For N =2, we have

fa=—6.0,+1(01+02)+ Vi3 (15)
where
Vnm=[(vn+vm)/(vn_vm)]2' (16)

This solution corresponds to a two-soliton solution obtained by Joseph (1977). The
equivalence of (4) substituted from (15) to Joseph’s solution (2.63) can easily be seen by
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transforming his equation (1.4) into a moving frame with a velocity ¢, and putting

1 Va+ VvV,

C=4 =1 =(Vi+Vi-4VVy)/ V. = .
CoY p=(W 2 1Va2)/ ViV, q ViV 2 V- v,

For N =3, we have
f3=—1616,0;—(8:6,+ 0,63+ 6:6:)
+i(Va301+ V3102 + Vi203)+ Vig+ Vo + Vi =2, 17

which corresponds to a three-soliton solution.
Now we investigate the asymptotic behaviour of our solution for large . From (4),
(11), (12) and (13), we get for t >+

N V.
u(x, 1)"‘,12:,1 Vf,(x— Vnt_fn)2+1’

(18)

that is, u(x, ) is represented by a superposition of one-soliton solutions (3). It is seen
from (18) that no phase-shift appears as the result of collisions of solitons unlike those
which take place between K—dV solitons (Gardner ef a/ 1974). This is an interesting
feature of the system of solutions expressed by (11)-(13).
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